ffitch

 

Function

Fitch-Margoliash and Least-Squares Distance Methods

Description

Estimates phylogenies from distance matrix data under the "additive tree model" according to which the distances are expected to equal the sums of branch lengths between the species. Uses the Fitch-Margoliash criterion and some related least squares criteria, or the Minimum Evolution distance matrix method. Does not assume an evolutionary clock. This program will be useful with distances computed from molecular sequences, restriction sites or fragments distances, with DNA hybridization measurements, and with genetic distances computed from gene frequencies.

Algorithm

The programs FITCH, KITSCH, and NEIGHBOR are for dealing with data which comes in the form of a matrix of pairwise distances between all pairs of taxa, such as distances based on molecular sequence data, gene frequency genetic distances, amounts of DNA hybridization, or immunological distances. In analyzing these data, distance matrix programs implicitly assume that:

These assumptions can be traced in the least squares methods of programs FITCH and KITSCH but it is not quite so easy to see them in operation in the Neighbor-Joining method of NEIGHBOR, where the independence assumptions is less obvious.

THESE TWO ASSUMPTIONS ARE DUBIOUS IN MOST CASES: independence will not be expected to be true in most kinds of data, such as genetic distances from gene frequency data. For genetic distance data in which pure genetic drift without mutation can be assumed to be the mechanism of change CONTML may be more appropriate. However, FITCH, KITSCH, and NEIGHBOR will not give positively misleading results (they will not make a statistically inconsistent estimate) provided that additivity holds, which it will if the distance is computed from the original data by a method which corrects for reversals and parallelisms in evolution. If additivity is not expected to hold, problems are more severe. A short discussion of these matters will be found in a review article of mine (1984a). For detailed, if sometimes irrelevant, controversy see the papers by Farris (1981, 1985, 1986) and myself (1986, 1988b).

For genetic distances from gene frequencies, FITCH, KITSCH, and NEIGHBOR may be appropriate if a neutral mutation model can be assumed and Nei's genetic distance is used, or if pure drift can be assumed and either Cavalli-Sforza's chord measure or Reynolds, Weir, and Cockerham's (1983) genetic distance is used. However, in the latter case (pure drift) CONTML should be better.

Restriction site and restriction fragment data can be treated by distance matrix methods if a distance such as that of Nei and Li (1979) is used. Distances of this sort can be computed in PHYLIp by the program RESTDIST.

For nucleic acid sequences, the distances computed in DNADIST allow correction for multiple hits (in different ways) and should allow one to analyse the data under the presumption of additivity. In all of these cases independence will not be expected to hold. DNA hybridization and immunological distances may be additive and independent if transformed properly and if (and only if) the standards against which each value is measured are independent. (This is rarely exactly true).

FITCH and the Neighbor-Joining option of NEIGHBOR fit a tree which has the branch lengths unconstrained. KITSCH and the UPGMA option of NEIGHBOR, by contrast, assume that an "evolutionary clock" is valid, according to which the true branch lengths from the root of the tree to each tip are the same: the expected amount of evolution in any lineage is proportional to elapsed time.

Usage

Here is a sample session with ffitch


% ffitch 
Fitch-Margoliash and Least-Squares Distance Methods
Phylip distance matrix file: fitch.dat
Phylip tree file (optional): 
Phylip fitch program output file [fitch.ffitch]: 

Adding species:
   1. Bovine    
   2. Mouse     
   3. Gibbon    
   4. Orang     
   5. Gorilla   
   6. Chimp     
   7. Human     

Output written to file "fitch.ffitch"

Tree also written onto file "fitch.treefile"

Done.


Go to the input files for this example
Go to the output files for this example

Command line arguments

   Standard (Mandatory) qualifiers:
  [-datafile]          distances  File containing one or more distance
                                  matrices
  [-intreefile]        tree       Phylip tree file (optional)
  [-outfile]           outfile    [*.ffitch] Phylip fitch program output file

   Additional (Optional) qualifiers (* if not always prompted):
   -matrixtype         menu       [s] Type of input data matrix (Values: s
                                  (Square); u (Upper triangular); l (Lower
                                  triangular))
   -minev              boolean    [N] Minimum evolution
*  -njumble            integer    [0] Number of times to randomise (Integer 0
                                  or more)
*  -seed               integer    [1] Random number seed between 1 and 32767
                                  (must be odd) (Integer from 1 to 32767)
   -outgrno            integer    [0] Species number to use as outgroup
                                  (Integer 0 or more)
   -power              float      [2.0] Power (Any numeric value)
*  -lengths            boolean    [N] Use branch lengths from user trees
*  -negallowed         boolean    [N] Negative branch lengths allowed
*  -global             boolean    [N] Global rearrangements
   -replicates         boolean    [N] Subreplicates
   -[no]trout          toggle     [Y] Write out trees to tree file
*  -outtreefile        outfile    [*.ffitch] Phylip tree output file
                                  (optional)
   -printdata          boolean    [N] Print data at start of run
   -[no]progress       boolean    [Y] Print indications of progress of run
   -[no]treeprint      boolean    [Y] Print out tree

   Advanced (Unprompted) qualifiers: (none)
   Associated qualifiers:

   "-outfile" associated qualifiers
   -odirectory3        string     Output directory

   "-outtreefile" associated qualifiers
   -odirectory         string     Output directory

   General qualifiers:
   -auto               boolean    Turn off prompts
   -stdout             boolean    Write first file to standard output
   -filter             boolean    Read first file from standard input, write
                                  first file to standard output
   -options            boolean    Prompt for standard and additional values
   -debug              boolean    Write debug output to program.dbg
   -verbose            boolean    Report some/full command line options
   -help               boolean    Report command line options. More
                                  information on associated and general
                                  qualifiers can be found with -help -verbose
   -warning            boolean    Report warnings
   -error              boolean    Report errors
   -fatal              boolean    Report fatal errors
   -die                boolean    Report dying program messages

Standard (Mandatory) qualifiers Allowed values Default
[-datafile]
(Parameter 1)
File containing one or more distance matrices Distance matrix  
[-intreefile]
(Parameter 2)
Phylip tree file (optional) Phylogenetic tree  
[-outfile]
(Parameter 3)
Phylip fitch program output file Output file <*>.ffitch
Additional (Optional) qualifiers Allowed values Default
-matrixtype Type of input data matrix
s (Square)
u (Upper triangular)
l (Lower triangular)
s
-minev Minimum evolution Boolean value Yes/No No
-njumble Number of times to randomise Integer 0 or more 0
-seed Random number seed between 1 and 32767 (must be odd) Integer from 1 to 32767 1
-outgrno Species number to use as outgroup Integer 0 or more 0
-power Power Any numeric value 2.0
-lengths Use branch lengths from user trees Boolean value Yes/No No
-negallowed Negative branch lengths allowed Boolean value Yes/No No
-global Global rearrangements Boolean value Yes/No No
-replicates Subreplicates Boolean value Yes/No No
-[no]trout Write out trees to tree file Toggle value Yes/No Yes
-outtreefile Phylip tree output file (optional) Output file <*>.ffitch
-printdata Print data at start of run Boolean value Yes/No No
-[no]progress Print indications of progress of run Boolean value Yes/No Yes
-[no]treeprint Print out tree Boolean value Yes/No Yes
Advanced (Unprompted) qualifiers Allowed values Default
(none)

Input file format

ffitch reads any normal sequence USAs.

Input files for usage example

File: fitch.dat

    7
Bovine      0.0000  1.6866  1.7198  1.6606  1.5243  1.6043  1.5905
Mouse       1.6866  0.0000  1.5232  1.4841  1.4465  1.4389  1.4629
Gibbon      1.7198  1.5232  0.0000  0.7115  0.5958  0.6179  0.5583
Orang       1.6606  1.4841  0.7115  0.0000  0.4631  0.5061  0.4710
Gorilla     1.5243  1.4465  0.5958  0.4631  0.0000  0.3484  0.3083
Chimp       1.6043  1.4389  0.6179  0.5061  0.3484  0.0000  0.2692
Human       1.5905  1.4629  0.5583  0.4710  0.3083  0.2692  0.0000

Output file format

ffitch output consists of an unrooted tree and the lengths of the interior segments. The sum of squares is printed out, and if P = 2.0 Fitch and Margoliash's "average percent standard deviation" is also computed and printed out. This is the sum of squares, divided by N-2, and then square-rooted and then multiplied by 100 (n is the number of species on the tree):

     APSD = ( SSQ / (N-2) )1/2 x 100. 

where N is the total number of off-diagonal distance measurements that are in the (square) distance matrix. If the S (subreplication) option is in force it is instead the sum of the numbers of replicates in all the non-diagonal cells of the distance matrix. But if the L or R option is also in effect, so that the distance matrix read in is lower- or upper-triangular, then the sum of replicates is only over those cells actually read in. If S is not in force, the number of replicates in each cell is assumed to be 1, so that N is n(n-1), where n is the number of species. The APSD gives an indication of the average percentage error. The number of trees examined is also printed out.

Output files for usage example

File: fitch.ffitch


   7 Populations

Fitch-Margoliash method version 3.67

                  __ __             2
                  \  \   (Obs - Exp)
Sum of squares =  /_ /_  ------------
                                2
                   i  j      Obs

Negative branch lengths not allowed


  +---------------------------------------------Mouse     
  ! 
  !                                +------Human     
  !                             +--5 
  !                           +-4  +--------Chimp     
  !                           ! ! 
  !                        +--3 +---------Gorilla   
  !                        !  ! 
  1------------------------2  +-----------------Orang     
  !                        ! 
  !                        +---------------------Gibbon    
  ! 
  +------------------------------------------------------Bovine    


remember: this is an unrooted tree!

Sum of squares =     0.01375

Average percent standard deviation =     1.85418

Between        And            Length
-------        ---            ------
   1          Mouse             0.76985
   1             2              0.41983
   2             3              0.04986
   3             4              0.02121
   4             5              0.03695
   5          Human             0.11449
   5          Chimp             0.15471
   4          Gorilla           0.15680
   3          Orang             0.29209
   2          Gibbon            0.35537
   1          Bovine            0.91675


File: fitch.treefile

(Mouse:0.76985,((((Human:0.11449,Chimp:0.15471):0.03695,
Gorilla:0.15680):0.02121,Orang:0.29209):0.04986,Gibbon:0.35537):0.41983,Bovine:0.91675);

Data files

None

Notes

None.

References

None.

Warnings

None.

Diagnostic Error Messages

None.

Exit status

It always exits with status 0.

Known bugs

None.

See also

Program name Description
efitch Fitch-Margoliash and Least-Squares Distance Methods
ekitsch Fitch-Margoliash method with contemporary tips
eneighbor Phylogenies from distance matrix by N-J or UPGMA method
fkitsch Fitch-Margoliash method with contemporary tips
fneighbor Phylogenies from distance matrix by N-J or UPGMA method

Author(s)

This program is an EMBOSS conversion of a program written by Joe Felsenstein as part of his PHYLIP package.

Although we take every care to ensure that the results of the EMBOSS version are identical to those from the original package, we recommend that you check your inputs give the same results in both versions before publication.

Please report all bugs in the EMBOSS version to the EMBOSS bug team, not to the original author.

History

Written (2004) - Joe Felsenstein, University of Washington.

Converted (August 2004) to an EMBASSY program by the EMBOSS team.

Target users

This program is intended to be used by everyone and everything, from naive users to embedded scripts.